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Introduction

Free-response experiments are often preferable to forced-choice ex-
periments, partly because they allow for the possibility of observing
striking correspondences betwecn the target and the response. Unfor-
tunately, the statistical methods used to evaluate these experiments are
not generally sensitive enough to allow full credit for such corresport-
dences. These analysis methods are primarily adapted from methods
used for forced-choice experiments. Thus, the degree of correspon-
dence between the target and the response is often reduced to a very
conservative approximation of true correspondence. One aim of this
paper is to show that the same analysis ideas can be used in a new way
to allow more credit for such correspondence.

Another problem with free-response experiments is that their com-
plexity often leads to incorrect application of statistical methods (e.g.,
see Kennedy, 1979). This paper reviews some common analysis methods
from the perspective of the assumptions necessary for their use. Also
reviewed are sources of randomness that allow these assumptions to
be met.

‘The paper is divided into two major sections. The first section shows
how some common approaches to analyzing free-response data can be
categorized according to the source of randomness built into the ex-
periment or the analysis. The basic requirements given in the first
section must be followed in order to apply these methods or extensions
of them. That section also describes some pitfalls that must be avoided.

The second section presents some advances in the analysis of free-
response (remote viewing) experiments at SRI International. These
advances allow for more refined estimates of the degree of correspon-
dence between the target and the response. As shown in this paper,
these methods fit into the context of the sources of randomness dis.
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cussed in the first section and can thus be viewed as extensions of the
existing analysis techniques.

Sources of Randomness

It is well known that responses in psi experiments, both forced-choice
and free-response, cannot be considered to be random in any sense.
Yet, all statistical analyses are based on the assumption that the exper-
iment or analysis contains some source of randomness. By categorizing
methods for analyzing free-response experiments according to where
the randomness cnters the procedure, we may avoid incorrect analyses
such as thosc discussed by Kennedy (1979). Focusing on the source of
randomness may also help in the design of free-response experiments.

Past discussions of free-response analyses methods have distinguished
between holistic and atomistic approaches (Burdick & Kelly, 1977,
p. 110). In holistic approaches, a judge assigns rankings or ratings to
responses matched with their corresponding targets and other potential
targets. Atomistic approaches are those for which specific features arc
compared in the target and the response. As shown below, both types
of analysis can be categorized by the nature of the underlying assump-
tions of randomness.

Sum-of-rwnks method. A common procedure for analyzing frece-re-
sponse experiments is to ask a judge to assign a rank to each target/
response pair, and then use the sum of ranks across trials as a summary
measure. Stuart (1942), Morris (1972), and Solfvin, Kelly, and Burdick
(1978) all discuss this method. Solfvin ctal. list the assumptions needed
for the application of this methad as: “‘a) therc is only one judge per
trial; b) all targets are equally likely to be selected; and c) successive
trials can properly be treated as independent” (p. 94).

For completeness and future reference, we present the formulas used
to find significance levels for this approach. Let R = number of ranks
possible for each trial, » = number of trials, and M = sum of ranks.
Then the exact significance level for a given sum of ranks is
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For large n, the sum is approximatcly normal with py = »{(R + 1)/
9 and ¢4 = n(R?* — 1)/12. Thus, a z-score can be formed as z = (M
— pw * .5)/0oy, and the significance level can be found in the normal

table.
‘The assumptions (a through c) listed above are sufficient, but not
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always necessary to ensure that these formulas are valid. The key to
understanding when they apply is understanding the basic assumption
built into the computation of the formulas (under the null hypothesis):

ASSUMPTION 1. The summary statistic is a sum of integers. Each number
in the sum is an integer from I to R. The R possible sets of integers that
could make up the terms of the sum are all equally likely.

In the situation where this technique is usually applied, the ranks
are assigned on each trial by presenting a judge with the response, and
with the correct target embedded with R-1 decoys. The key source of
randomness in this application is that the target and each decoy must
have been equally likely to have been the actual target at the start of
the experiment. Furthermore, the rank assigned on any given trial
must not influence or be influenced by the rank assigned on any other
trial. It was this latter condition that was violated in some experiments
discussed by Kennedy (1979); in those experiments the judges ranked
cach target against each response. Thus, assigning a target a rank of
one for a particular response might have precluded that same target
from being assigned a rank of one for another response.

Notice that it is crucial that the target and decoys were all equally
likely to be chosen as the target at the beginning of the expceriment,
since the target selection was the only random sourcc in the experiment.
Thus, for example, if a target was selected without r: andomizing being
involved and decoys were selected later, even if they were the same
type as the target, the approach was invalid. In fact, since no random-
ization is involved in such an experiment, no statistical technique can
be recommended without flaw.

We now describe another use for these formulas, which seems to
have been unrecognized. R. G. Jahn, Dunne, & E. G. Jahn (1980) de-
scribe an atomistic approach to remote viewing analysis that uses a 30-
bit descriptor list. They outline several normalization and scoring
methods that can be used to access the quality of a particular remote
viewing. The final analysis, however, is done by converting the quality
measure to a rank. This rank is determined by computing the quality
measure for a given response as matched against each possible target.
If there are R possible targets, then R quality measures are computed
for the given response. The rank assigned for the trial is simply the
number of targets in the pool that match the response as well as or
better than the actual target used in the trial. In other words, the
target/response pair is assigned a rank, but it is assigned by a formula
instead of by a human judge.

Jahn et al. then use what they call “the common z method for a
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discrete distribution” (p. 223) to obtain significance levels. But this is
simply the normal approximation given above for the sum-of-ranks
method. (They apply this to the average rank instead of the sum of
ranks.) Their summary statistic s exactly equivalent to a sum-of-ranks
statistic. Given certain assumptions about how the experiment is con-
ducted, the above formulas are valid. Thus, for example, in their Table
12 (p. 227) they use the normal approximation even though there are
only five trials. The exact formula (1) given above could be used instead.

The crucial feature of the sum-of-ranks method, and thus the method
used by Jahn et al., is that assumption 1 must hold. Under the null
hypothesis, each rank must be equally likely to be any integer from 1
to R, independent of the ranks assigned during other trials. These
conditions would hold for the following experiment, analyzed using
an atomistic approach. A pool of N targets 1s selected and coded ac-
cording to the bit list. A series of » trials is conducted by choosing
targets from the pool with replacement. Each response is coded ac-
cording to the bit list. Ranks are assigned by choosing a quality measure,
computing it for the response compared to each of the N targets, and
then counting how many targets match as well as or better than the
actual target. (If ties are present, a slight modification is necessary.
This is common if the quality measure can only assume a few values.)
The sum of the ranks is computed, and the significance level is evaluated
using formula (1) or the normal approximation.

This method is not valid if the targets are chosen without replace-
ment, because assumption I no longer holds. To see this, suppose an
experiment is conducted with only two targets, T, and T, in the pool
and two trials, As an extreme case, suppose both responses vield the
exact same bit-list configuration. Further, suppose this particular re-
sponse configuration matches T, better than T, so that when T, is
the correct target, a rank of 1 is assigned; and when T is the correct
target, a rank of 2 is assigned. If the targets are sampled without re-
placement, the only possible sets of ranks are (1,2) or (2,1). If sampled
with replacement, all R" = 2% = 4 possible sets are equally likely, and
thus assumption 1 is met. Notice that the only source of randomness
in the experiment is in the target selection; it is that source that allows
or disallows the use of assumption 1.

Forced one-to-one matching. Forced-matching procedures for free-re-
sponse experiments are discussed by Burdick and Kelly (1977), who
attribute the first computation of the exact probability distribution to
Chapman (1934). Scott (1972) gives tables that can be used to find
significance levels; formulas for exact probabilities are given by Feller
(1986, pp. 107-108).

e e —
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The procedure is essentially equivalent to comparing two closed decks
and counting the number of matches. For example, suppose N free-
response trials are conducted and a judge is given the N targets and N
responses, and told to match them one-to-one. The statistic of interest
is the number of correct matches. There are N1 possible configurations
of matches. The assumption used to calculate the formulas and tables
mentioned above is

ASSUMPTION 2. The summanry statistic is the number of correct matches
when maiching N targets to N responses. Each of the N! possible configu-
rations of matches is equally likely.

This is generally the case (under the null hypothesis of no psi) if a
closed set of N targets is presented in random order, and then the
targets and responses are sufficiently randomized before being pre-
sented to the judge. Hyman and others suggest that problems can arise
if trial-by-trial teedback is given (see, for example, Druckman & Swets,
1988, p. 182). Under such conditions, a subject might avoid mentioning
features that were prominent in previous targets. Those targets would
then have a smaller than average chance of being matched with the
new response, thus negating assumption 2. Notice that while the source
of randomness in this kind of experiment is the random presentation
order of the targets, the other details of the experiment must ensure
that assumption 2 holds under the null hypothesis of no psi.

Forced matching can also be employed in experiments using an
atomistic, bit-list approach. A set of N targets can be coded according
to the bit list, and then presented in random order over N trials. The
quality measure derived by comparing the bit lists for targets and re-
sponses can be computed for all N* target,/response pairings. Matching
can then be done by finding the one-to-one pairing that maximizes the
sum of the quality measure over the N pairs. The summnary statistic is
the number of correct matches in that pairing. This is essentially the
method Scott (1972, pp. 86-87) recommends for evaluating verbal
statements from mediums, except that the N? quality measures in that
case are based on the N subjects’ assessments of the accuracy of the
statements in the N readings provided by the medium.

Aninteresting feature of the matching method is that the probability
of exact x matches, and, thus, the significance level (significance level
= P[x or more matches)), is about the same for any N of at least 10.
Further, these probabilities are quite accurately approximated by the
Poisson distribution with mean (and thus variance) of 1 (Feller, 1968,
p. 108). The appropriate formula is
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P(exactly x matches) ~ e '/x! = .367879/x!,

regardless of N. Using this formula, P(4 or more matches) = .019, and |
P(3 or more matches) = .080. Thus, regardless of the number of tnals, ]
four or more matches lead to a significant result, while three or fewer

do not!

Unforced matching. Many experiments criticized by Kennedy (1979)
had the order of target presentation as the only source of randomness.
Instead of being asked to do a one-to-one matching, however, judges
were instructed to rank each response against all targets. The summary
statistic and significance level were then based on either the sum-of-
ranks method described above, or the number of hits as compared with
a binomial distribution. Both methods assume trial-by-trial indepen-
dence, a feature not present in these experiments.

The most conservative approach for reanalyzing these experiments
correctly, and the one adopted by Kennedy, is to assume forced match-
ing was used and then evaluate the mgmfuance level for the number
of first-place matches. How conservative is this approach? It depends
on the behavior actually adopted by the judge. The following discussion '
compares the two extremes when the summary measure s the number '
of direct hits.

Assume .\ targets are compared to N responses, and there are M
first-place matches. At one extreme, assume forced matching was used.
At the other extreme, assume ranks were assigned independently for
each trial. Table 1 shows a comparison of results for these methods.

Notice that the p-values for the two methods get closer as N gets
larger. It is an established fact that for large & and small p, the binomial
distribution is well approximated by the Poisson distribution with mean l
Np (sce Feller, 1968, p. 163). Thus, for large N the two methods are
essentially equivalent.

Permutation methods. Permutation methods were apparently first ap- \

‘TABLE |

Comparison of Methods for Evaluating First-Place Matches

Forced
Matching Independence
Mean, uy 1 1
Variance, i 1 (N = /N
Distribution of M Approx. Poisson Binomial, p = 1/N
p-value, N =4, M = 4 042 004
p-value, N = 10, M = 019 013

p-value, N = 20, M = 019 016
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plied to free response data when Pratt and Birge (1948) rccognized
that Greville’s (1941) forced-choice formulas were applicable to the
assessment of verbal material from mediums. They restricted discussion,
however, to methods using a normal approximation. Scott (1972, p.
87) secms to have been the first to recognize how to do an exact test.

Cousider an experiment with » trials, so there are n targets and n
responses. Suppose that judging is donc by creating an n X n matrix
of scores comparing cach target with each response. Thesc scores could
be based on, for example, ranking the » targets for each response,
using an atomistic quality measure for each target versus each response,
or having a judge assign ratings to the degree of correspondence.

To apply the pcrmutation method, arrange the matrix so that the
scores for the correct matches are on the diagonal. The total score for
the correct match is the sum of the diagonal elements (the trace) of
the matrix. The summary statistic for the experiment is the proportion
of all possible matches that have a total score as good as or better than
the total score for the correct match. In other words, if the columns
of the matrix are pcrmuted in each of the »! possible ways, and the
trace of the matrix computed for each permutation, the summary sta-
tistic is the proportion of those traces that are as good as or better than
the trace for the correct ordering. Note that in some cases, such as
rankings, smaller traces are better; in other cases, such as ratings, larger
traces are better.

To apply this procedure the order in which the targets are used must
be randomized just as in the case of forced matching. The assumption
under the null hypothesis can be summarized as follows:

ASSUMPTION 3. A series of n responses is given and compared to each
of 0 targets to form an n X nomatrix of scores. The summary measure is the
proportion of permulations of targets for which the total sum of scores is as
good as or better than for the corvect ordering. At the start of the experiment
n! possible orders of use of targets were equally likely.

Notice that this technique is not appropriate if the order of use of
targets is not random, although it may be tempting to try to use it in
such a case. Non-psi factors such as the day’s hcadlines and weather
can be too easily incorporated into both the choice of the target and
the response.

Remote Viewing Methodology

Humphrey, May, and Utts, (1988) discuss a methodology being de-
veloped at SRI International for the analysis of remote viewing ex-
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periments. In this section, we first summarize the methodology, then
show how it can be applied under the different assumptions in the
previous section. Finally, we show how this methodology can be uscd
to pick decoys for free-response experiments.

Quantitative definitions of targets and rvesponses. The main goal in the
analysis of remote viewing data is to assess how well the responses
match their intended targets. To make that assessment, three elements
are needed: a definition of the targer, a definition of the response, and
a measure of comparison.

Recent experiments in remote viewing at SRI have used an estab-
lished pool of 200 photographs from National Geographic. Responses
have been limited to a few pages of drawings and words. The purpose
of the present analysis has been to develop a method of quantifying
the targets and responses that is refined enough to incorporate both
concrete and abstract features and that is flexible enough to allow the
definition to be changed according to the purpose of the experiment,
the level of experience of the subjects, and so on. In an experiment
with novice subjects, for example, the goal might be to sce if they can
identify major features; in an experiment with more experienced sub-
jects the goal might be to measure identification of more specific
features.

To accomplish these goals, a list of 130 features was developed. These
were categorized into ten levels, ranging from specific structures (e.g.,
churches, forts) in level ten, to abstract one-dimensional geometry (e.g.,
parallel lines, spirals) in lcvel one. The complete list is given by Hum-
phrey et al. (1988).

The 200 targets in the pool were coded according to the visual im-
portance of each of the 130 fcatures on the list. For each feature a
value between 0 and 1 was assigned, with 1 meaning that the feature
virtually dominated the entire picture, and 0 meaning that the featurc
was absent. Thus, the quantitative definition of a target consisted of a
list of 130 numbers, each between 0 and 1, describing the degree of
visual importance of cach feature on the list.

After an cxperiment was conducted, the responses were coded sim-
ilarly, except that the number assigned to cach figure represented by
the analyst’s degree of belief that the feature was present in the re-
sponse. For example, if the response contained the word river, then
the river feature was assigned a value of 1. On the other hand, if the
response contained a drawing of parallel snaking lines without a label,
the analyst might have assigned a value of .3 to the river feature.

'To compare the targets with the responses, the values assigned to
the features should have the same meaning in both. Thus, for this
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phase of the analysis, the target values were set to 1 for each feature
for which the visual importance was rated at .2 or higher, since those
features were dcfinitely present in the target. The others were set
to 0.

Comparison of targets and responses. May, Humphrey, and Mathews,
(1985) describe a method of comparing targets and responses based
on a figure of merit (FM). This measure is essentially a product of the
proportion of the target material that was in the response (the accuracy)
times the proportion of the target material that was correct (the reli-
ahbility). The accuracy, reliability, and FM are easily adapted for com-
paring targets and responses as defined using the list of 130 features.
The general versions of the formulas for the jth target/response pair
are

k

Accuracy; = ;= — = >
’ ’ 2 WiT;
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and FM; = a; X r;, where R;; and T}, are the values for feature % in
response j and target j respectively, and (R; N 7,); is the intersection
between the target and response for feature k, defined in this application
to be min(R;;, T;;). The sums are taken over all 130 features in the
list. In this version of the figurc-of-merit definition, we allow for the
possibility of adding weights Wj, in order to change the contribution
of various features to the FM.

Assessment of a single remate viewing. The quality of a single remote
viewing can be assessed by computing FMs for the response compared
to each of the 200 possible targets. Assuming that the target was elected
randomly from the set of 200, with each target equally likely to be
chosen, the proportion of FMs as large as or larger than the one for
the correct target can be thought of as a p-value. It represents the
probability—under the null hypothesis of no psi—of obtaining a match
as good as or better than the one obtained.

Note that the crucial source of randomness here is the equal prob-
ability of selection for each arget. Certain targets, particularly those
with more detail, producc higher FMs on the average than others. The
quality of a remote viewing, thereforc, cannot be assessed by the mag-
nitude of the FM alone.
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Assessiment of the entire experiment. An entire experiment based on »
trials can be evaluated using one of the methods in the previous section,
with the choice of method depending on how the experiment was con-
ducted. Suppose a series of n trials is conducted and the targets are
selected with replacement. The sum-of-ranks method can be used by
computing the rank of the FM for the correct target when embedded
in the ordered list of all 200 possible FMs, Under the null hypothesis,
and assuming no ties, this rank is equally likely to be any integer from
1 to 200. To see this, suppose the response is generated before the
target is selected. The 200 FMs can then be computed and put into
an ordered list. The corresponding ranks from 1 to 200 can be assigned.
Randomly selecting a target is equivalent to randomly selecting one of
those ranks, with equal likelihood for each one. The argument does
not change if the target is selected before the response is generated.

After conducting 7 such trials and finding the corresponding ranks,
the significance of the sum of the ranks can be evaluated using equation
(1), with R = 200, or the corresponding normal approximation. Note
that the legitimacy of using the normal approximation is based on the
magnitude of 7, not R.

The other analysis methods discussed in the previous section can be
used similarly. For example, if an experiment is conducted by selecting
A targets from the pool of 200 and presenting them in randomized
order without replacement, then the forced-matching method de-
scribed for atomistic bit-list approaches can be used. Or, a matrix of
FMs can be created and used in the permutation methods.

One problem with these approaches is that statistical power may be
low because the FM depends on the target complexity. More complex
targets are more likely to be matched 1o responses because of this de-
pendency. This does not affect the significance level, but it may give
unnecessarily discouraging results. Work is underway to try to nor-
malize the FM to avoid this problem. Meanwhile, the feature list and
cluster analysis have been used to help choose decoys for human
Jjudging.

Using the feature list to choose decoys. In addition to the problems already
mentioned with the feature-list approach, certain elements in both the
targets and the responses arc not contained in the list of 130 features.
Furthermore, no mechanism in the FM approach gives credit to re-
sponses that look similar to the target in various ways but are possibly
mislabeled. So far, the best approach for evaluating such matches seems
to be to use a human judge, presented with R-1 decoys embedded in
a set with the correct target.

One issue of concern with the judging approach is how to choose
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decoys that are dissimilar enough to not be confused with the correct
target. For example, in the pool of National Geographic photographs
there arc several waterfalls, several snow-capped mountains, and so
on. If decoys were selected from this pool randomly, there would be
a relatively high probability that a decoy would look similar (o the
actual target. "I'he following discussion presents a method of selecting
decoys such that they are as dissimilar as possible.

The original assignments of visual importance of the 130 features
can be used to compare targets and separate them into groups from
which decoys can be selected. Similarity between targets can be assessed
by computing an FM for the pair of targets. Using the same notation
as in formula (2), we define the similarity (5;4) between targets j and &
to be

o

(2 WAT; N T,,),»)

S = .
S W, S Wi,

Using these measures, we can create clusters of targets that are similar
within clusters and different between clusters. For N targets there are
NN = 1)/2 unique values (19,900 for N = 200) of S;«. The values j
and % that correspond to the largest value of S, represent the Lwo
targets that look most similar. Suppose another target, m, is chosen
and §,,; and §,,;, are computed. If both values are larger than 8, , (for
all n not equal to j or k), then target m is assessed to be most similar to
the pair j, k. The process of grouping targets based on these similarities
is called cluster analysis. See Johnson and Wichern (1982, Chapter 11)
for a discussion of various clustering algorithms. We used hierarchial
clustering with the complete linkage method, with the S-Plus statistical
softwarc package. Statistical packages such as BMDP and § also have
clustering routines; BMDP has a version for PCs.

"This procedure was followed to create clusters of the 200 targets in
the National Geographic pool. Table 2 provides an overview of the 19
clusters found in the analysis. Some names appear to be quite similar,
but, in fact, these sets are visually quite distinctive. Figure 1 shows the
graphic output of a single cluster in detail. A much more complex—
and visually difficult—graph is generated for the full cluster analysis
and is not.included here; this smaller subsct has been chosen to illustrate
the analysis. (1'o make the graphic analysis more meaningful, we did
the analysis with 1 — S;;.) All targets in this particular sample cluster
are islands. Except for one outlier (i.e., a hexagonal building covering
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TABLE 2

Names of the 19 Clusters

No. Name No. Name
1 Flat Towns 11 Cities w,/Prominent Geometries
2 Waterfalls 12 Snowy Mountains
3 Mountain Towns 13 Valleys with Rivers
4 Cities with Prominent Structure 14 Meandering Rivers
5 Cities on Warter 15 Alpine Scenes
6 Desert/Waler Interfaces 16 Outposts in Snowy Mountains
7 Deserts 17 Islands
8 Dry Ruins 18 Verdant Ruins
9 Towns on Water 149 Agricultural Scenes
10 Outposts on Water

an island), the islands fall into two main groups: with and without man-
made elements. ''he natural islands include three similar mountain
islands, two sandbars, and two flat verdant islands.

Once these clusters have been created, decoys can be selected such
that the R choices for judging, i.e. the target and the R-1 decoys, are
each from separate clusters. This ensures that no decoy is too similar
to the target or to another decoy. Since clusters have varying numbers
of photographs, one should select R clusters with equal probability,
and then select a photograph within each cluster.

Using cluster analysis (o create target packets. The concepts of target
similarity and cluster analysis can also be used to create sets of targets

Linear Geometries 1198
(e.g., Runways) 1133
1128

1186
Many Structures 178 —|
(e.g., Town) 1177 —1 J
Ruins » 1083
1185
Flat And Verdant 11393_

1140
Sand Bars 1088 :'——

1161
Mountains 1049 : l |
1038

Hexaponal Building Covering Island ———» 100 —

0.0 0.2 0.4 0.6 0.8 1.0
1-S |,k

Figure 1. Detailed cluster analysis of the istand cluster.
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that are different within a set. Using this technique, we created 20
packets of b targets each from the National Geographic pool. To accom-
plish this, we used cluster analysis with dissimilarity between targets as
the clustering criterion. Thus, the two most dissimilar targets were
paired first, the next two most dissimilar next and so on, until a picture
somewhat like Figure 1 emerged, but with all targets. Targets closest
to cach other were those most dissimilar. We used that information
along with some visual shuffling to create packets of dissimilar targets.

These packets can be used as self-contained target/decoy units by
randomly selecting a packet and then randomly selecting a target within
the packet. ITuman judging can then be used by ranking the five targets
in the packet against the response, repeating this for » trials with re-
placement and using the sum-of-ranks method of analysis.
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DISCUSSION

Moggis: I have two kinds of comments. First of all I think it really
Is an interesting, innovative and exciting method. As far as the method
itself is concerned, however, it sounds like an enormous amount of
work and I wonder if you can comment on this aspect of it. What you
have there, given all of the work that you put into it, is a very effective
set of targets and sets of descriptors for them and there is now a lot
that you can do with them. One question is: do you see this as something
wherein there should be an attempt to have a standardized sct of such
targets that can then be used across labs? Do you sce this as something
wherein each lab that might definc an idiosyncratic set of target ma-
terials really is going to have to do this all themsclves right from scratch,
including an enormous amount of playing around with the different
levels of descriptors that they are going to try to deal with? If so, can
you give some kind of fecling as to how easy this would be pragmatically
for any lab to do given its own target interests? You have got geograph-
ical locations and sites and it seems to have worked really rather well
with those. My second point is just simply more of a question. Do you
sce any restraints on the kinds of target pools that this might be used
on just simply because it maybe harder to devise the different layers
of meaning that you have been talking about?

UTTs: That is a good question. 1t certainly is a lot of work to put
together a target pool and then to go ahead with the fuzzy set or with
any bit list approach. Clearly it is a lot of effort. On the other hand, if
a lab is in the situation where the experimenters know they are going
to be mn business for any length of time, which unfortunately is not
always the case, then I think it is worth the effort. It is not valid to wait
until the experiment is done and then fill out the bit list for the target,
unfortunately. And so that is a problem. I think that you are right. It
isa lot of work and it might be a useful idea to share target pools across
labs. In fact that might add (o the replicability issue. But you know it
is like any endeavor; you have to decide how much the prep time is
worth in the payoff at the end. T have to say frankly that I am not sure
that the payoff for using the figure of merit approach was that high. 1
would say that there was strong payofl in using the method to choose
decoys. When you have a huge target pool, such as 200 targets, it is
hard to simply choose decoys and not get some repetition—you end
up with a snowy mountain as the target and one of your decoys is also
a snowy mountain and you are out of luck.

MORRIS: Can you share with us roughly how long it did take?
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Urrs: I think that I will pass that on to Ed.

May: Well, it is really hard to say. We have been working out this
problem for four or five years. I want to point out that it is really an
iterative process. The pool started out at 400 and we did a clustering
and then we noticed holes and some really junky targets that we could
throw out. I would say with the target pool of 100 that we have now
it would take maybe two years.

STANFORD: In terms of getting decoys that are “different” this seems
great as a mechanical method. However, it seems to me that there may
be a much more fundamental problem. This is derived from a set of
categories that you developed from the bit list. But what does this
really have to do with human cognition and perception? Similarly the
way it works in the head is onc thing and the way it works in terms of
a system like this may be something altogether different. Do you have
anything to say about that?

May: In fact, one of the real problems we had in putting this thing
together was that Bev Humphrey, who was the primary mover on this
for us, paid a great deul of attention to the particular bit list. Clearly
the thing is scnsitive as to what your bit list is. Under no circumstances
would we recommend that this bit list be used in some other laboratory
for two reasons. It was very highly tailored and I recommend that they
alt be tailored to match the rarget pool in question. Why have a purple
giraffe in your bit list if there is not one in your targets. Also it was
tailored to the gencral skill level ol the subjects who were to be used
in analyzing their data. That is a fair thing to do as long as you do it
up frontand a priori. So when you do that it is not such a large problem
as you suggest. Also as to the fine-tuning of the bit, the target pool—
which was frankly a surprise to me when we laid them all out on the
Hoor—just looks visually different and that was our criteria, visual
diflerence. And there was some minor fine-tuning on top of the tech-
nical part.

STANFORD: With regard to that, do you have ancillary evidence that
that is true? Did you actually have people rating similarities so that you
could show that?

MaAy: Yes, we did. Certainly we did not do that over all 100, but we
took samples of it and did it among ourselves around the laboratory.
Our PA paper last year described in some detail how we gathered
ground truth and did the comparison.

SCHOUTEN: I must say that T was very impresscd by the paper. It is
one of the things which has always interested me, because I think an-
alyzing free-response data is really difficult. T have a couple of com-
ments. One is that I think your approach to the bit list assumes that
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the psi information would cover all of the details. A bit list means that
you split up the target into details. If I understand you correctly, the
scoring you use is, in effect, a combination: the more response itcms
are correct, the more target items arc correct, the higher the psi score.
It is my impression from the analyses of spontaneous cases we carried
out, that actually what often happens is that the basic concept, the idea
behind an event is what is transmitted and not the details. But I must
say it is an excellent way to establish diflerences between targets. A
second comment is that I am a bit surprised because there are alrcady
various scaling methods which arc used to establish distances between
items. You might save yourself a lot of work using one of these if you
only want to establish dimensions and different sets. A third point is
with regard to sensitivity. In Utrecht we have been using a method
which would give us a somewhat more correct test for evaluating free-
response data. I grant immediately that yours are much better than
ours. But then we took the data of an actual experiment and wrote a
program to simulate outcomes of experiments in such a way that we
introduced different levels of psi. So we increased the probability that
the outcome was influenced by psi and then applied our evaluation
method. We found, to our great disappointment, that the nice method
that we had developed was still less sensitive in demonstrating the psi
we had introduced into the data than the simple binomial. Did you
ever try a simulation like that to find out whether your method is
indeed more sensitive than the binomial?

Uts: First, we did indeed find that the method of having human
judges do rankings was more sensitive than using the figure of merit
with the bit list approach as the actual assessment method. That is why
we went back to just choosing the decoys using the fuzzy set approach.
We used sum of ranks instead of a binomial, but it 1s the same idea to
use that. Secondly, about other methods for making paired compari-
sons, we looked at some other methods and none of them seemed to
do as well as this method. In fact, for that reason we were thinking of
writing this method up and putting it out into literature in other fields
where they are trying to solve the same problem. And finally, your
first point was that just because you have done well by comparing things
for this particular bit list does not mean that you have more psi. In
response to that, you do have to tailor your list of things according to
your definition of what you are looking for as evidence of psi. Now at
SRI the decision was made that it should be visual correspondence. So
this bit list is specifically designed to find visual correspondence.

Ho~xor1oON: In doing a meta-analysis of the ganzfeld work it was
absolutely impossible to code anything concerning targets and com-
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position of target pools. Just as it is theoretically possible, that a lot of
the experimenter effect is due to different subject populations, it is
quite possible that a lot of the variability in free-response studies is due
to differences in free-response target pools. There is also the degree
to which different investigators are successful in creating interesting
and yet relatively orthogonal target pools. The situation is, T think,
analogous to what would happen in psvchology if, in Rosenthal’s person
perception test of experimenter expectancy effects, every investigator
used a diffcrent set of photographs without describing anything about
their characteristics or if clinicians using projective techniques such as
the Thematic Apperception Test or the Rorschach Test each created
his own ink blots or ambiguous figures. 'That is bound to greatly increase
the variability. Certainly some degree of standardization is really very
important.

PALMER: It seems to me that the more holistic methods, such as the
matching procedures, and the more atomistic methods such as the one
that you have developed are tapping very different things. Have you
looked at the correlation between the results with those two methods?
If the correlation is high, what would you think about possibly com-
bining the two outcomes to get something that takes advantage of what
is going on with both procedures?

UTTs: That is a good question. I would say the correlation is not
that high because they are tapping difterent parts of what is going on.
In fact, we have been looking at methods of trying to combine them
and have not yet come up with one that we feel is satisfactory. But that
is what we actually are ultimately trying to do.

May: One of the problems with this kind of atomistic approach and
the holistic methods and rank order procedure is that if the response
is of bad quality, but good enough that a judge can just squeak it into
a first place match that is one circumstance. The second circumstance
wotld be if you have a fantastically high correspondence, an agreement
with the first place, and the judge had no trouble making a first place
match, the statistic does not differentiate between that really great hit
and that just squeaking-by hit. 1 feel that it is not fair to a good response,
so we are looking at a way ol merging the two procedures to take
advantage of that.

STANFORD: When you talk about standardization as Chuck was—
and I agree with those remarks—before we standardize let us be sure
we have all the elements together. For instance, if 1 were mysclf going
out after targets, I don’t know whether I would get into some of these
19 that are listed. My own experience suggests—and this is a very
clinical type of thing—that you can’t frame scientifically, but that there
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are some kinds of targets that might be a lot better than this. Some
investigators, Chuck in his lab and some others historically, have been
looking at what types of material make better targets. So when we
standardize, if our aim is really high psi yield and not some specific
kind of target that we are interested in or something of that sort, it
seems to me that we really do need a lot more research on what types
of targets individuals are likely to be sensitive to.

UTTs: 1 absolutely agree with you.

HONORTON: I also have been thinking a lot lately that what we maybe
ought to do, at lcast in our experiments with novices, with people who
have not done these free-response procedures before, is to have a single
target pool that is used consistently across all of the screening or first-
timers’ sessions, One of the real problems in doing any kind of process-
oriented rescarch with free- -response methods is that, to the extent that
there are target effects and given the amount of time it takes to do an
individual’s free-response session, you can very wcll mask either good
subjects or some correlate of SubJ(i(t performqnce and becausc of the
luck of the draw you get a psi-missing target. But if you have a stan-
dardized single pool that is used consistently for at least the initial
stage, then all subjects are being assessed on an equal footing.

CARPENTER:  am new myself at free-response work, so my comment
may be a bit naive, but I am wondering about limitation of the “bit”
approach to analysis. What we have been doing is using group psycho-
therapy sessions as the mode of ESP response and then relating that
to one of four pictures taken from magazines. The rclationship between
those two things reminds me of the dream work in that the relationships
are very allegorical and metaphorical. For example, a session might
have a certain mood and there might be no literal reference to anything
that happened in the session in any clement in the picture, but there
is something about the mood that members of the group take as alluding
to a kind of similarity. Now it seems to me that a bit approach would
not have any way of catching that. I am wondering if those of you who
have been doing this feel that anything significant is lost with the bit
approach, the more metaphorical kind of relationship.

Urrs: 1 would say that you need to construct the bit list if you can
to somehow incorporate those elements that you think are likely to
arise that show cvidence of psi. In the SRI case we were mainly focusing
on visual correspondence. I do not know if there is a way to capturc
that sort of thing in a bit list, but that is something that you would
want to think about. Then you need an experienced judge who can
pick those out of the response.

May: 1 am not so sure that standardization of targets is the great
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way to go, other than as Chuck just suggested, for the very first level
novice activity. What is important with this particular procedure, at
least from our point of view, is that one can tailor it to match whatever
one is looking for. If you are really interested, Jim, in the allegorical
nature of what you are doing, you can design a bit list that focuses
upon that and down-plays the visual or maybe the literal interpretation,
so you can explore that. In fact, the method is powerful enough to
allow you to put different weighing factors in so you can explore specific
imagery. The neat thing about this procedure, at least from my point
of view, is that it is infinitely flexible and cach group can tailor it to
their own specific needs.

HHONORTON: In fact, with a computer you get rid of visual targets
altogether and tailor your bit descriptive list to the particular subject
population, the kind of problem that you are working with. You can
give the agent whatever the bit categories are that are selected for the
session and let him or her create out of a playroom full of materials
some representation of that. That is another possibility that would
greatly increase the freedom of expression while still providing an ob-
Jecuve scoring structure.




