THE PSI CHANNEL CODING PROBLEM
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Introduction

Surely the main reason why the laboratory results of para-
psychologists have not been widely accepted by the science establish-
ment lies in the elusive nature of psi phenomena. Researchers in
extrasensory communication have had to resort to statistical inference
in order to demonstrate that communication is actually taking place.
Yet Shannon’s “noisy-channel coding theorem” states that, for a broad
class of channels, if the information rate is kept below the capacity of
the channel, then by appropriate design of the encoder and decoder it
is possible to reduce the probability of error at the output of the
decoder to an arbitrarily small value. This suggests using channel
coding to increase the reliability of extrasensory communication to the
point where the reality of the phenomena could be verified by direct
sensory experience and statistical tests would no longer be necessary.
In this paper I consider the question of whether or not Shannon’s
model applies to extrasensory communication and, if so, what
problems must be overcome in order to reap the benefits of channel
coding promised in Shannon’s theorem.

The primary purpose of this paper is not to solve problems or
suggest specific experiments, but to provide a framework in which
interesting questions might be asked. The framework is based on
Shannon’s information theory, which I predict will play an increasingly
important role in parapsychological research.

Two characteristics of information theory should be understood at
the outset. First, although information theory is couched in signal
transmission language, the theory itself does not postulate or depend
on any underlying mechanism. Not only is a signal transmission model
of communication unnecessary, causality is not even required. That
signal transmission language is used throughout this paper is due to
long habit, not necessity.
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Figure 1. Binary symmetric channel.

Second, a wide range of processes can be modeled as “communica-
tion systems,” from a radio link to a computer or biological organism.
The term “extrasensory communication” is used here in its broadest
sense. It applies just as well to a PK task involving 2 random generator
as to a long-distance ESP experiment.

I will first review the fundamental ideas of information theory that
relate to channel coding and then consider whether these ideas can be
applied to extrasensory communication.

Channel Models and Channel Coding'

A channel model requires the specification of the set of possible
inputs, the set of possible outputs, and, for each input, a probability
measure on the set of outputs. Discrete memoryless channels consticute
the simplest class of channel models and are defined as follows: The
input is a sequence of symbols from a finite alphabet, a,, . . ., ag, the
output is a sequence from the same or a different alphabet, by, .. ., by,
and each symbol in the output sequence is statistically dependent only
on the symbol in the corresponding position of the input sequence and
is determined by a fixed conditional probability assignment P(b |ak).

The simplest non-trivial discrete memoryless channel is the binary
symmetric channel (BSC) in which the input and output symbols are
binary digits and each digit in the input sequence is reproduced cor-
rectly at the channel output with some fixed probability 1 — €. The BSC
model, which will be used for illustrative purposes later on, is shown in
Figure .

In order to talk about channel capacity, it is necessary first to define
what we mean by “information.” In Shannon’s theory, this term is used
in a highly restricted technical sense to denote a quantitative measure
of uncertainty, related 1o the number of possible outcomes and the
probability (i.e. uncertainty) associated with cach outcome. Let x
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denote the input symbol to the channel and y the output symbol. Let
{a,,...,ax} bethe X sample space and {b,, . . . ,b;} the Y sample space
in an XY joint ensemble with probability assignment P(ay, b;). We want
a quantitative measure of how much the occurrence of y = b, changes
the probability of x = a, from the a priori probability P(ay) to the a
posteriori probability P(ay |b;). The quantitative measure which turns
out to be useful is the logarithm of the ratio of a posteriori to a priori
probability. This gives the following fundamental definition: the
information provided about the event x = ay by the occurrence of the event
Yy = bj i

P(ax | b;)
Play)

We will take the base of the logarithm to be 2, in which case the
numerical value of (1) is the number of &is of information.

If we interchange the roles of x and y in (1) and apply the identity
P(y | x)P(x) = P(x | y)P(y), it is easily seen that the information provided
aboutthe eventy = b;by the eventx = ayisalso given by (1). Because of
this symmetry, I(ay;b;) is called the mutual information between events
x = a, and y =b;. Mutual information is a random variable with
average value

I(ay; by) = log (1)

K J
I(X; Y) = Z Z P(ak,bj)l(ak; bj). (2)
k=1 j=1

The capacity C of the channel is the maxium value of average mutual
information per channel use, where the maximum is taken over all
input probability assignments P(ay), i.e.,

C=max I{X; Y)

Pay)
K J P A
Cmax 3 S Py |agPiag loge P2 piigsymbol. (3)
ay) k=1 j=1 (ak

(The capacity may, of course, be expressed in bits per second by
multiplying C in (3) by the input symbol rate in symbols per second.)
In the case of the BSC, the maximum average mutual information
occurs when the a priori input probabilities are P(0) = P(1) = 1/2. The
capacity of the BSC, as a function of the crossover probability e, is

Cpsc =1+ elogze+ (1 —€)log, (1 — ¢ bits/binary digit. (4)

This is plotted in Figure 2. Note that the maximum amount of average
mutual information that can be conveyed in one use of the channel is
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Figure 2. Capacity of the binary symrmetric channel.

one bit, and that this occurs either when € = 0 or when € = 1. When
€ = 1/2, the input and output are statistically independent and the
capacity is zero.

It is worth noting at this point that the channel model is completely
probabilistic: it depends only on the XY joint ensemble. This means
that we need not specity the mechanism which underlies the statistical
dependence between channel input and output. In fact, because of the
symmetry of mutual information, we need not even say which variable
is the input and which the output. Further, nowhere does time enter
into the channel model. It is perfectly acceptable for the “output™ to
occur before the “input.” Not only do we not have to postulate some
sort of signal energy propagating from a sender to a receiver, we do not
even have to postulate a causal relationship between the two, or even
think in terms of “sender” and “receiver.”

We now turn to the problem of channel coding. Without loss of
generality, we will take the input to the channel encoder and the output
of the channel decoder to be binary digits, where each digit entering
the encoder carries one bit of information (i.e., P(0) = P(1) = 1/2). A
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Figure 3. Communication system block diagram.

block diagram of this model is shown in Figure 3. Unlike the channel,
which is defined probabilistically, the encoder and deccoder are
assumed to be deterministic.

The function of the encoder is to produce, for each input data block
of binary digits, a unique codeword suitable tor transmission over the
channel. To combat the effects of the unreliability of the channel, each
codeword contains a specified amount of redundancy. The set of all
codewords is called an “error-correcting code.” The {unction of the
decoder is, given the output of the channel, to determine which
codeword was most likely to have been sent. The output of the decoder
is then the data block corresponding to this best guess as to the
codeword.,

The significance of the capacity of a channel (which is here expressed
in bits per second) stems primarily from the famous “noisy-channel
coding theorem” of Shannon. In imprecise terms, this coding theorem
states that, for a broad class of channels, if the channel has capacity C
bits per second and if binary data enter the channel encoder ata rate (in
binary digits per second) of R < C, then by appropriate design of the
encoder and decoder, it is possible to reproduce the binary digits at
the output of the decoder with as small a probability of error as desired.

Shannon’s theorem says that (for long messages) there exists a code
which can reduce the probability of error to an arbitrarily small value in
spite of the unreliability of the channel. The most obvious way to
ensure that a message will get through reliably is simply to repeat it
many times and make a decision based on majority vote at the output.
However, the repetitive redundancy purchases reliable transmission at
the cost of an ever-decreasing transmission rate. The surprising thing
about Shannon’s thcorem is that it promiscs crror-free transmission
over an unreliable channel without further reduction in data rate given only
that the rate is less than the channel capacity.

An example may help to clarify the above. Suppose we are given a
BSC with crossover probability € = .05 which accepts binary digits at a
rate of 30 binary digits/sec. From (4) we calculate the capacity of this
channel to be
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Cgsc(.03) = .71 bits/binary digit
= 21.3 bits/sec.

This means that the data rate going into the encoder must be less than
21.3 binary digits/sec. in order to apply Shannon’s theorem. We will
choose this data rate to be 10 binary digits/sec. Then for each binary
digit which enters the encoder, three binary digits will be sent over the
channel. The decoder willin turn produce one binary digit at its output
for every three binary digits it receives from the channel. The most
common type of code used in this situation is an (n,k) block
error-correcting code, where k is the length of the input data block to
the encoder and n is the length of the corresponding codeword sent to
the channel. The resulting communication system is shown in Figure 4.

The simplest (n,k) code with k/n = 1/3 is the (3,1) code. Here the
encoder simply triplicates the digit at its input and the decoder makes
a 2-out-of-3 majority decision on the triple it receives from the
channel. This code can correct any single error in the transmitted 3-
digit codeword and a straightforward counting argument shows that
the probability of error at the output of the decoder is
p = (3)(.95)1(.05)* + (.05)* = .00725. So the probability of error in
the transmission of a data block consisting of one binary digit has
been reduced from .05 when no coding is used to .00725 when the
(8,1) code is used. Of course, this gain in reliability is paid for by the
reduction in data rate from 30 binary digits/sec. to 10 binary digits/
sec. We might well question whether it was worth using the code at all.
But now Shannon's theorem comes into play. It says that, by going to
longer codes with the same k/n = 1/3, we can decrease the probability
of error to an arbitrarily small value with no further penalty in data
rate. To illustrate this effect, we will now analyze the performance of
an (n,k) = (15,5) code.

The encoder for a (15,5) code accepts a data block of 5 binary digits
and produces a codeword of 15 binary digits. There are 2% = 32
possible 5-digit data blocks and thus 32 codewords. Again, the
simplest approach would be for the encoder to simply triplicate the

f—k — bn=3k—~ -n = 3k— —k —

CODEWORD DATA BLOCK
+~ENCODER BSC DECODER

R=10 BINARY DIGITS/SEC. Cegsc = 21.3BITS/SEC 1O BINARY DIGITS/SEC.

Figure 4. Coded BSC system.
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input 5-digit data block and for the decoder to decide which
codeword (data block triple) was most likely sent by simple majority
vote. A moment’s reflection, however, reveals that nothing would be
gained over the (3,1) code used previously. In this case, simple
repetition is not an efficient way to structure the redundancy. A (15,5)
code which has optimally efficient redundancy is shown in Table L
Notice that every possible pair of codewords differs in at least 7
positions, so that the decoder can correctly decode any received word
which contains no more than 3 errors. If the received word contains
more than 3 errors, the decoder may or may not decode correctly,
depending upon the particular error pattern. A more complex
version of the counting argument used in the case of the (3,1) code

TABLE 1
{15,5) Error-Correcting Code

Data Block Codeword
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shows that the probability of error at the output of the decoder is
approximately p, = .0037. Of course, this is the probability of a data
- block error; in order to compare the (15,5) code to the (3,1) code, we
need the probability that a single data digit is in error. A conservative
assumption s that when the decoder makes a mistake, its output is
equally likely to be any one of the 31 incorrect data blocks. In this case,
a particular digit tn the 5-digit output has about a 50 percent chance
of being correct. So the probability of output digit error is
p = .5 X .0037 = .00185. Thus the (15,5) code yields a lower prob-
ability of error than the (3,1) code at no further penalty in data rate.

The improvement in reliability realized when we moved from the
(3.1) to the (15,5) code was not dramatic. This is partly because an
increase in code length from 3 to 15 is not large, and partly because
the improvement obtainable as a function of code length is
dependent upon the initial reliability of the channel. The better the
channel, the greater the percent improvement for a given increase in
code length. By conventional communication system standards, a
BSC with € = .05 is not a very reliable channel. We know that
(properly chosen) longer codes with k/n = 1/3 will do even better, but
very long codes would be required for really reliable communication
if the initial channel were a really poor one. (Of course, when we use
long codes, the question of whether we can decode in a reasonable time
and at a reasonable cost becomes important. This problem is treated
in the field of coding theory.? Suffice it here to say that long codes
have been found which can be decoded with relative ease.)

Parapsychologists do not have the luxury of dealing with a channel
which has a probability of error of .05 at a data rate of 30 binary
digits/sec. The data rate is not unreasonable for certain types of
experiments, but the probability of error is more likely to be on the
order of .49. The shape of the channel capacity curve near the .50 point
warns that this will be a problem. But before considering such practical
problems, we must first ask whether, in principle, Shannon’s theory can
be applied to psi processes.

The Psi Channel

We first ask whether Shannon’s channel model is applicable. The
answer hcre is clearly yes. A “channel” in information theory is simply
two variables together with the probability measure that relates them.
Any psi experiment that lends itself to statistical analysis, therefore,
also lends itself to channel modeling.
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For example, an ESP card guessing experiment could be modeled as
a discrete memoryless channel with a 5-symbol input/output alphabet
and assigned probabilities 1-4e for a correct call and € for an incorrect
call as shown in Figure 5. The assumptions underlying this model are:

(1) The n™ call is statistically dependent only on the n™ target symbol.

(2) The probability of an incorrect call is independent of both target
and call symbol.

(3) The conditional probabilities do not vary with time.

Are these assumptions reasonable in a card guessing experiment?
Clearly not. But they are conservative. The equiprobable discrete
memoryless channel is a worst-case model in the sense that its capacity
1s less than or equal to the capacity of any other channel with the same
size input/output alphabet and average statistics. Any divergence from
equiprobability or independence can only increase the capacity since
such divergence constitutes additional information about the channel
which can (in principle at least) be used to advantage. The
random-error channel is in this scnse the most difficult channel to deal
with and hence has the lowest capacity. This lower bound on the
capacity of the actual channel, however poor the bound may be,
provides a basis for applying Shannon'’s channel coding theorem. As
more information about the channel is obtained, better models with
higher capacities can be constructed, but in the meantime we can
attempt to increase reliability by the use of channel coding based on the
worst-case model.

INPUT (TARGET SEQUENCE) OUTPUT (CALL SEQUENCE)

+ i-4¢ vv +

Figure 5. Open-deck card-guessing channel model.
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We now turn to the question of whether Shannon’s channel-coding
theorem can be applied to the psi channel, And here we run into
trouble. A channel involves only two variables. The addition of an
encoder and a decoder, however, introduces two new variables. Since
any two variables constitute a channel, we now have six channels as
shown in Figure 6. (T'he encoder and decoder are the wx and yz
channels.) I am assuming here that the auxiliary channels are due to
observer effects, not to indeterminacy in the encoder and decoder.

In a conventional communication system we assume that the
capacities of these auxiliary channels are zero, but we are certainly not
Justified in doing so here. If, as is widely believed, psi effects transcend
distance and time, then we must allow the possibility of auxiliary
channels with nonzero capacities. And this in turn implies the
possibility that all attempts to improve the reliability of the original
channel through the use of channel coding may be “short circuited” by
these auxiliary channels. The addition of the encoder and decoder
could thus introduce an “observer effect” which would cancel out the
benefits of coding and result in no net gain in reliability.

Only laboratory tests can determine whether or not these auxiliary
channels will be a serious problem in practice. However, there are some
encouraging indications. First, the use of statistical inference to
evaluate the results of experiments consisting of many repeated trials
does not cause a complete deterioration of the psi effect. Using statistics
to evaluate the results of an experiment consisting of n repeated trials is
not unlike the use of an (n,1) repetition code in a coded communication
system. That an impressive result such as ‘p < 107 can be “observed”
by many other researchers (through journal publication, etc.,) without
apparent adverse effect, is a hopeful sign. Of course, this does not
imply that a similar resistance to observer effects would necessarily
obtain if we tried to produce a physical output with the same order of
reliability, but the reported successes of “majority vote” experiments

F——————— - AUX. CHANNEL|— — — — — — — -
_____ o I
e -
| r— — —Jaux. cranneLE — — —, :
Ittty l
| |
¥ o encooer XL {cuanner ] oecoper FZ
I - - — — — T | l
L — — —JAUX.CHANNELI— — — -
e e — — J

Figure 6. Coded channel with auxiliary channels shown.
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gives hope that this might be the case. Stanford® and Kennedy* have
interesting discussions of the majority vote technique.

There is a possible problem, then, in applying Shannen's coding
theorem to the psi channel. There are indications that this may not be
an insurmountable obstacle, but it is certainly well to be aware of
possible observer etfects caused by the introduction of channel coding.
Who sees what (and how they think aboutit) may be, and very likely are,
important factors. But even if observer eftects acting over the auxiliary
channels do not wash out our attempts to improve psi process
reliability, we still face practical ditficulties. :

The Data Rate Problem

In this section, we will assume that the capacities of the auxiliary
channels are zero. (This is equivalent to what Kennedy* has called the
“majority vote hypothesis” and is probably much too optimistic.) The
problem then reduces to finding a coding scheme that will give the
desired performance. To give a feel for the sorts of problems involved,
we will consider a simple example.

Suppose we take as our channel model a BSC with € = .49 which
accepts binary digits at a rate of ten per second. (This could correspond
to a binary random generator cxperiment with 10 trials/sec. and an
average scoring rate of 51 percent.) The capacity of this channel is,
from (4),

Casc(-49) = .0003 bits/binary digit
= .003 bits/sec.

In order to apply Shannon’s theorem, the k/n for the block code must
be less than Cgsc, say k/n = .0002. The length of the code word sent to
the channel must thus be 5000 times the length of the data block
entering the encoder. The information rate into the encoder is then
.002 bits/sec., which is also the data rate, in binary digits/sec., assuming
that each binary digit entering the encoder carries one bit of
information (i.e., P(0) = P(1) = 1/2). The simplest code we could use in
this case is the (5000,1) repetition code. The probability that the
decoder would correctly decode a 5000-digit received word by majority
vote is approximately p = 0.92. To further increase the reliability, we
would resort to longer codes with the same k/n as illustrated in the
previous section.

In this example, it would take more than eight minutes to transmit
one databit and perhaps several hours to transmit one codeword, if any
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code other than the (5000,1) repetition code were used. Aside from the
fact that such a low data rate would be of little interest, there are
practical problems which make such a rate virtually impossible to
sustain. First, there is the very real problem of finding subjects able and
willing to serve as part of the “channel.” If each channel digit must
receive individual attention, as seems likely if a washout of the psi effect
due to complexity-independence is to be avoided,*® then the
transmission of even one codeword would be an impossibly tedious
task. Furthermore, the longer the transmission time for a codeword,
the greater the probability that the channel will shift from psi-hitting to
psi-missing or otherwise exhibit non-stationary behavior. Therefore, it
would seem imperative that we be able to reduce the time required to
transmit a codeword. Three approaches come to mind: (1) increase the
channel symbol rate, (2) go to a larger channel alphabet or (3) use
parallel channels.

Experiments such as those of Schmidt® suggest that increasing the
channel symbol rate is not the answer. Clearly, ifindividual attention to
each channel symbol is required, then the symbol rate is necessarily
limited to human sequential data processing rates. In communication
system terminology, we would say that the channel is bandlimited. We
might be willing to push the symbol rate beyond the limits of human
sequential processing speeds if the strength of the psi effect did not fall
off too rapidly. For the BSC, however, the capacity of the channel
varies as the square of the deviation from chance for small deviations,
which suggests that even a relatively slow fall off of psi strength with
increased channel symbol rate would be unacceptable.

The second approach-—going to a larger channel alphabet—is the
standard approach to increasing information rate over a bandlimited
channel. The idea is to increase the amount of information per channel
symbol by reducing the & priori probabilities of the symbols. Thus,
with the 5-symbol alphabet employed in ESP card guessing experi-
ments, the maximum amount of information that could be conveyed by
one channel symbolislog, 5 = 2.32 bits as compared tolog; 2 = 1 bitin
the binary case. (The amount of information contained in one
“symbol” of a free-response ESP experiment can be practically
unlimited. However, quantifying this information is a difficult problem
and the symbol rate is extremely low.) Whether the use of large
alphabets will be truitful or not depends upon the relationship between
the 4 priori probability of a hit and psi strength.* At present, all that can
be said is that if the use of large alphabets proves to be beneficial, then
the channel capacity can be increased and the code length required for
reliable communication correspondingly reduced.
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The third approach—the use of parallel channels—is closely related
to the second approach. Here, too, the idea is to increase the amount of
information in one “use” of the channel(s). One use in this case is the
simultaneous transmission of one channel symbol {not necessarily the
same one) over each of N parallel channels. One could think of using a
different subject on each of the N channels, but this is not the most
attractive of the possibilities. Better would be a situation in which the
attention of a single subject could be distributed over the N channels. A
multiple-dice-throwing experiment would be a classical example of
this. As a more modern example, a subject might attempt to influence
simultaneously N random generators by receiving feedback in the
form of a visual pattern, where different parts or aspects of the pattern
are controlled by different generators. The use of parallel channels
opens up the possibility of coding across channels as well as in time,
which in this case could be accomplished by setting 2 high-aim/low-aim
switch on the i'* generator according to the value of the i digit in a
binary code-word of length N. The output of the channel would then
be an N-vector whose i component is some measure of the action of
the i random generator. Binary encoding and decoding would be
performed in conventional fashion. As far as the subject would be
concerned, his task would be the same regardless of what codeword was
“transmitted.” (I am indebted to Helmut Schmidt for pointing out this
implementation of parallel channels.”) Of course, the parallel channels
approach depends on the ability of the subject to have the same order
of effect simultaneously on N channels as he has on one channel. The
hope that this might be possible is based on an analogy with human
information processing capabilities. Humans are much better parallel
processors than sequential processors. Studies of human information
processing show that most people can handle only about seven
“chunks” of information sequentially without getting confused, but
that the complexity of a “chunk” can be varied over a wide range
without substantial loss.

Discussion

A coding theorist on first venturing into the field of parapsychology
and reviewing the decades of debate over the statistical evidence of a
weak psi effect in the laboratory is very apt to ask himself—as I
did—why redundancy in the form of channel coding has not been
used to provide a reliable and convincing physical demonstration of the
existence of the phenomenon.

After a little reflection, it became clear to me that redundancy in the
form of a crude channel code, namely, the (n,1) repetition code, had
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been used from the very start, first in the form of repeated trials and
later in the form of “majority vote” experiments. In almost all cases,
however, the redundancy has been used in an attempt to increase
statistical significance rather than to provide a convincing physical
demonstration. (As Kennedy so aptly puts it, “. .. statistical (rather
than practical) significance has become the standard for evaluating psi
effects."®) The reasons for this seem to me to be: (1) the channel has not
been characterized and is therefore unpredictable, (2) the data rates
achieved to date are too low to support a real-time physical
demonstration and (3) the coding scheme being used is not powerful
enought to guarantee reliable results.

On the first point, it must be said that it is extremely difficult to
characterize an unknown channel which operates at a very low average
signal-to-noise ratio, as does the psi channel. One would hope that
channel coding could be used to improve the signal-to-noise ratio and
make characterization easier. But one of the fundamental results of
information theory is that for reliable and efficient communication, the
code must be matched to the channel. And how are we to do this if we
know next to nothing about the channel? Itis a circular problem which
requires that we pull ourselves up by our bootstraps. But as with other
situations of this sort, once a little headway is made we can expect very
rapid progress.

On the second point, the approach to the low data rate problem
which appears most promising to me is increased parallelism. It seems
likely that we are dealing with a channel which has a high capacity, but
which is severely bandlimited. In this case, the use of parallel channels
and/or large channel alphabets is indicated.

On the third point, itis not clear that a more powerful coding scheme
will solve the reliability problem. Given a weak but steady statistical
effect on a conventional channel, Shannon’s theorem guarantees that
we can achieve completely reliable communication. But Shannon’s
theorem may not be applicable to extrasensory communication
because of the auxiliary channels created when an encoder and
decoder are introduced. An attempt to generalize Shannon’s theory to
take into account these auxiliary channels would be a most worthwhile
undertaking. But even if it turns out that Shannon’s theorem cannot be
so generalized, the information-theoretic model with auxilliary
channels will still provide a useful framework in which to consider such
observer-theoretic questions as: who should receive trial-by-trial feed-
back and who should receive only summary feedback? I will hazard the
speculation that the existence of auxiliary channels actually increases
the overall channel capacity of the system, and that one of the keys to
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achieving reliable communication is the use of these auxiliary channels
so that they interfere constructively rather than destructively.

I would like to close by sharing a beginner’s intuitive feeling about
the ultimate reliability of extrasensory communication: either such
communication can be madc virtually error-free, or else it will never be
much more reliable than it is today. It all depends on the nature of the
underlying mechanism.
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DISCUSSION

Morris: How might you attempt to apply these ideas to sender/
receiver situations as was talked about in Dr. Byer's paper, in which a lot
of information is being simultaneously generated and exchanged, e.g.,
two opponents in a basketball game. I gather this has been one of the
problems with Shannon’s theory in general; it's harder to apply in that
kind of complex circumstance.

Ruporrir: Well, I take a very operational view of that. I only consider
what shows up in the two variables that I'm looking at. The effect
observed may be due to all sorts of influences, e.g. the sharing of
common emotional states, as was spoken about yesterday. Neverthe-
less, if I'm only looking at the two variables, that is the channel.
Taking all these other factors into consideration gets us into the area of
“how do I get a better channel?” I suspect that this may involve getting
constructive rather than destructive interference among all these
factors. I've got an experiment in mind which would decouple the
sender and receiver from the percipient who is trying to produce the
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psi effect. The idea is that an outside observer would provide the
information and would receive the information, but the channel
capacity would be created by a psi source in a different setting. So that
rather than having a pair of percipients try to communicate, 1 would
use one percipient to create the channel and let other people use the
channel.

Morris: You would then selectively study circumstances in which
that would be less likely to occur.

RupoLrprh: Yes.
Ruperrer: How do you define your channel?

RuporrH: A channel is simply two variables and the probability
assignment that relates them.

Rubpkrrer: Well, actual channels have to have more than that.

Rupovrpa: I'm talking about the channel model of Shannon. It's a
mathematical model.

RUDERFER: So you're talking about mathematics only, a inathematical
model only.

RuporpH: That’s right.

RuperreR: You're also talking about a noisy channel and so does
Shannon. How do you get noise in a mathematical model?

RuporpH: That'’s incorporated into the probabilities.
RUDERFER: Yes, but where does it arise from physically?

RupovrpH: I don’t know. Shannon doesn’t consider thai. He looks at
the effects of noise, but his mathematical model does not address itsclf
to the physical mechanism involved.

Ruperrer: Then if you're excluding all physical phenomena, your
statement about energy not applying is not applicable. You're talking
about a mathematical equation and its interpretation or a mathermatical
model and its interpretation; thercefore, energy is precluded only
because of that, not for any other reason.

RupoLpH: I'm dealing with a mathematical theory and it’s just like
applying group theory to crystallography. Itis a mathematical theory
that is applied to physical channels to improve their reliability. It is
used every day. But the thceory itself does not require a physical
interpretation.
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RuDERFER: Which means that when you go into the physical area, you
have to add it according to the requirements of the properties of an
actual channel.

RupovrpH: In the design of the encoder and the decoder, you need
know nothing about the channel other than its statistics.

RosENTHAL: Being such an interdisciplinary area, parapsychology
focusing on the same problems may forget the sciences of origin they
come from. I think the people coming from the physical sciences may
not realize how fuzzy and noisy and murky the signal/noise ratio is in
the behavioral and social sciences right now, so that for the physical
scientists there may be a world of difference between their traditional
science and psi phenomena. For the psychologist, for example, or for
the sociologist, this is an old problem. My hunch is that the order of
magnitude of the size of the effect in some of the psi phenomena may
be very much on the order of some of the effects in general psychology.
Let me give you an example: Psychiatric diagnosis is notoriously
unreliable. We can make it more reliable by adding more psychiatrists
and getting a majority of opinions, but I would argue that in a sense
that is statistical. That is, rather than increasing the number of patients
in our research study who are being diagnosed, what we're doing is
increasing the precision of definition of each of the patients, so, in a
sense, we are reaping some statistical benefits. I think we’ve been doing
that a long time in the behavioral sciences. I think psi may not be as
badly off as people who come from the physical science tradition think
it is.

RupoLpH: I'm thinking of how to get through to the people outside
of the field. I'm not comfortable with statistical inference and I know a
lot of my colleagues aren’t. Suppose something is significant at the five
percent level. Nobody I know is really very impressed by that. Yet, if I
can have a physical demonstration that works nineteen out of twenty
times, they will be impressed and it’s the same order of effect. I guess
I'm just making a plea to use the redundancy in psi experiments for
physical demonstration, just so I can convince my friends and not have
to show them statistics which they don't like. But statistics are a very,
very useful tool and I don’t mean to imply otherwise.

Mogrris: You note that impressive results, such as P less than 1076,
can be observed by many other researchers through journal
publications, without apparent adverse effect. I'm not sure that’s true.
The lore within the parapsychological community is that if you’re
halfway through a study, don’t present the half of your data even to
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chums and buddies, because it will plummet at the end. There’s even an
example of that in the literature. In Parapsychology from Duke to FRNM,
there is a significant progress report by Rex Stanford of an EEG/ESP
study which, when you read the later publication, turns out not to be
significant overall. Some people would say that a major portion,
perhaps, of parapsychology’s replicability problems is that once one
announces a result and that therefore one has something to repeat, one
has immediately involved a rather large observational community, who
may be a little testy about what they observe. I'm not pleased by that
interpretation of things, as 1 like to do the ordinary business of science
and generate results for all to observe and utilize.

RuporpH: 1 agree. But there are journal articles that do give
impressive results like that.

Mogris: That I agree with, and the question of asking whether or not
the observer effect affects only “not yet” but not “already,” I think may
re-insert time back into things, because any act of measurement
separates the universe into “already” versus “not yet.” Even when you
say your model is time independent, you sooner or later take an
observation separating the universe into “already” versus “not yet.” If
you're trying to assess a precognition study, all you could say at any
given moment was whether or not the precognitive statement had been
validated “already” versus “not yet.” So time is back in there.

RupoLpH: Yes. And I share your uneasiness about the assumption of
unlimited observer etfects, which can certainly cause a lot of paranoia.



